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1. Introd' ‘tion

The previcus paper: [1], [{ , and 3] .ere conceined with ~olution
concepts for finite (n-person) games. [1) and (2] developed a new class
of solution concepts, termed nuclei, which were deter.nined by a family of
mathematical programming problems involving conditions on the excesses of
coalition values with respect to payoff vectors. These concepts included
convex nuclei, convex separable nuclei, the special case of quadratic
nuclei, and Schmeidler's [4] nucleolus. An earlier development [3] dealt
with the solution concept ur the core of un n-person game, using the duality
theory of linear programming to characterize the core via Shapley's (5]
minimal balanced collections and to answer, in the affirmative, a conjecture
by Shapley on the sharpness of proper minimal balanced collections. In that
paper, a proper operator M(-), defined on coalitions, was introduced to
characterize the redundancy of certain coalition inequalities. Roughly
speaking, M .ssociates with each cu .lition the best weighted value among
all collections which are balance . with respect .0 the argument rlaying the
role of grand coalition. D. Schmeidler [6) has defined a game with an
arbitrary set of players, and has extended the solution concept of the
core and the notion of a balanced game to this case. He has shown that
an infinite game for which the range of values of the coalitions is non-
negative and bounded has non-empty core if and only if it is balanced.
His proof, bascd on arguments usually used to prove the lahn-Banach theorem,
extends thc Charnes-Kortanek [i-operator as defined in [3] tu this situation.
In this paper we define the notion of a 'weakly balanced game'" under
very general conditions involving no topology whatever. Using the M-operator,

we further extend the work of Schmeidler by establishing duality results for




a pair of (possibly) infinite dime.sional linear programming ~iublems
arising from a generalized game. A necessary and sufficient condition
is given in order that a separating hyperplane argument can Le employed
to prove the existence ¢f a candidate core member for a weakly balanced
game. This candidate is shown to be in the core if and only if the game
is balanced, No use is made of tcpological ileas, but conditions are given
under whic' the - ore -iewber takes - valves in a bounded set.

Analogous to results in the n-player case, we use the Charn2s-Kortanck
M-operator to characterize the redundancy of certain coalition values in
restricting core membership.

2. Definitions: Generalized Games, Weakly Balanced Games, Outcome and
Core of a Generalized Game.

We cor ider an arbitrary lin .r vector space V. A subset x of
V, callced the et of ¢ litionc and . el -aer* X° ‘n x, called the
grand coalition, are specified such that the following prope.ties hold:

A. x spans V; that is, each member of V can be written as a

linear combination of finitely many members of y, and
B. There exists a Po € V such that for each X in x, there is
a finite subset
{X] Xz,...,Xn} cont:ined in x, non-negative numbers

Myses sl sl n* > 0 such at

n.X. + n*X = P .,
p b o

n 12

i




Property B can be paraphrased as follows: There is a vector Po such that
each coalition can be incorporated in an expression of Po as a weighted
sum of coalitions, the weights being positive. If an ordering on V is
induced by the ccne spanned by x, property B becomes X € x ._ﬁPo > n*X
for some n* > 0. Note that B is satisfied if X, - X isin x,V x ¢
since P0 may be chosen to be Xo. Given a set x such that A 1is not
satisfied, it will always be possible in this context to restrict attention
to the space spanned by x, so that with this understanding A can always
be assumed to hold. In addition to x and xo, an arbitrary function

v from x to the real numbers, called the payoff function, is given.l

The triple (x, X,; v) is called a generalized game.

Exgle L:

Let ):1 be a field of subsets of an arbitrary set S, let x, be
the set of characteristic functions of members of ):1 and let X = be the
characteristic function of S. Let 1 be a bounded, non-negative function

on x, with v. equal to zerc on the charscteristic fumction ef the empty

1
set and vl(xo) nositive, (’(l' x'; vl} is Scheeidler's [6] fermulation

of a geme with infinitely many players, and is a generalized game.

!xglo g

Let 22 be a collection of subsets of an arbitrary set § such that

if Ac, thes S-Ac],. Lot X and x, be defined from [ as

(]

1. v is oftea called the characteristic fumction of the game, but this
tern is reserved for its mere wsusl mesaing ia subsequent exaaples,
while the tern payoff is semstimes woed for what we will designate
o0 an ocutcoms.. Owr wesge conforms to Schawidler's (6).




in example 1, ang let v, be any -eal vslued tunction on ‘hen

(xz, Xo; VZ) is a generalized game.
Example 3:
Let S be an arbitrary set, and x = [0, 1]b = the set of all

functions tfrom S into the interval [0, 1]. Let v be an arbitrary

b. (x, X, v) 1is a generalized

real vajued fiaction on x and xo e [0, 1] 5

game, if XO(S) =1 for all s € S the: the value of a cearation at

s might represent the probability that s participates in that coalition.
In all three examples, an appropriate Po is the characteristic

function of S.

A generalized game is called weakly balanced if

sup Z is V(XG)I Z R P n >0, A ranges over all finite

o’ a
acA €A . .
sets indexing menmbers of x.

is finite, in which case the sup is denoted Py

Let sup _ Z " v(Xa)l Z n X = X 03> 0, A ranges over all

a a 0o’ a
acA acA —
finite sets 1ndea

ing members ot ..

The sup is well-defined, since Xo v x SO0 the set 1ncludes v(Xo) it least,

In many cases it :5 possibte to (noos: Po = Xo' so that ol Py *
But even when this 1s not possible, the finiteness of v, 1S & (ensequence
of the finiteness of Py

This follows from the fact that Xo ¢ v and property B which allows

us to write




S
n
£ ] *
P _Z ng Xy + M, n, Nt >0, X oex
1=1
For any ex} . z2ssion
0
X = n. X, X, X ¢y, n. 0,
0 T Te TR Ty
J
n n
by substitution Pp = 'z n; X ¢ n'_Z " Xj, and
i=l j=1
n n
® *
hence  p > .Z ng vIX,o + _Z n, v(Xj).
i=1 J:l

By letting the exnression of XO range over all those which are possible,

we have
n

© "y > 1, V(. + n* v SO V< w.
TN j Vgl o’ 0

The conditions for weak boundedness are essentially conditions on
the function v, which cannot be chosen arbitrarily for a weakly balanced
game. Nonetheless, v need not be bounded, as the following simple example

shows :

Let V be the real line, x = (X =N for N a positive

N-11%N-1
. _ - —3 N N
integer} und P = X = 1. Le. v(Xy [) = (-1 N for Xy ey,

and v(X) = © otherwy.e. To .atisfy propert, B, chuose n;_, = é—> 0

so that

for X Po. Clearly v, =p, =1 despite

*
N-1 € X N-1 *N-1
the fact that v 1is unbounded above and below,
Note that in Example 1, the value of Ve and p, are unchanged if
the equality is replaced by <. For, in this example, the positive orthant

in the space V coincides with the convex cone determined by ,

'-
so if ) n.a. oAl wio. v,V and Xj € . then

for some characteristic vectors Xi e x and v. >0,




Since in this example v is a non-negative function,

I ] ]
n. v(x.) + v, v(X.) > n. v(X,)
j=1 1) i=1 2 Y Tya )
n
while Jil n. /(J. + ): ixi = v,_, wit . nJ, v‘ > 0.

Observe also that all finite games are weakly balanced (see Proposition
4 of {3].)

An eutcome of a generalized game is a linear functional, A, on
V such that A(Xo) = v(xo). An outcome is said to be in the core
of the game if for each X ¢ , X) > v(X).

We will .e concer. :d with erivi:yg colitions fcr core membership

of a weakly balanced geaeralize ' ganme.

3. Formulation as Dual Programs

Henceforth we consider the weakly balanced game (x, Xo; V).

Consider the following pair of linear programming problems.

(D (rn
inf X(Xo) sup Z s v(x“)
A atA
s.t.  A(X) > v(X)

X ¢ x s.t Er.uxa=xo

aeA

A 1s a linear functional on V

n >0

[V S
where A ranges over all possible fainite

index sets for members of .




For a weakly balanced game, problen Il has a finite supremum, Vo 1f
a functional A 1is I-feasible, and if A(Xo) = v(Xo), then A is an

outcome in the core of the game (yx, X v).

’roposition 1:

Let (x, xo, v) be a weukly valanc'd generulized game., A necessary

condition that its core be non-empty is that v(xo) =V,

Proof:

Let A be I-feasible, n = (n0 seeeany ) be Il-feasible. Then
1 n

n n n
AMX ) = A(.Z‘ n, X, = .Z n, AKX ) 3_.2 n V(X ), by the linearity
i-1 i i izl 7§ i i=l1 i i
of A and the non-negez-ivity o' n.  ence A’Xo) 2 T But if A 1is in

the core, v(xo) = x(xo) 2 Voo and since Xo € x, it follows that
Ve 2 v(Xo), so that LIRS v(Xo).

When Vo = v(xo), the game is said to be balanced, 1In the next

section it is shown that it is sufficient that the game be balanced in

order that rhe core be non-empty.

4. Duality Theory for Weakly balanced Games

Given a subset ¢ _x, the operator MW: V + [- =, ] (the extended

real line), 1s defined as follows.1

1. Here M, 1is an extension of the M-operator for finite games defined
by Charnes-Kortanek [3], and closely related to Schmeidler's operator
[6). Tte M-operator in [3] i< given in the present notation as
Mw(x), where y = x - {X}.




M (X) = supt ) r v (Y )] Z n
v yeG ' Y yeG

Y =X, n >0, G ranges over
Y v Y=

all finite index sets of members YY € v} if some appropriate G exists

and the sup is finite,; otherwise MW(X) = - o jif no G exists, and

MW(X) = ¢+ = 1if the set is not bounded above. Note that MX(XO) =V,

The following properties of M are easily verified:

v
(1) Mw (X1 + XZ) > Mw(xl) + Mw(XZ) if at least one term on the
right is finite.
(ii) If a > 0, then Mw(aY) = a MW(Y)'
(iii) Restricted to any domain for which Mw(X) > - ® Mw is
concave.
{(iv) Either MW(O) =0 or MW(O) > 0. In the latter case if there
exists X € V such that Mw(x) > -@_  then Mw(x) = Mw(x +a-0) >
MW(X)n+ aMw(O) for any a > 0, which implies MW(X) =+ @,
(If 121 ni Xi =0, ny >0, Xi ¢ ¥, then the vector n with these
=
ni's as non-zero term; determines an infinite ray).

To simplify notation, for the remainder of this section, Mx(-)

will be abbreviated M(:). Note that MX(X) > v(X) for X ¢ x.

Let K= {X € VIM(X) > - = and M(P_ - n*X) > - = for some
n* > 0}. The following properties of K are easily proved:
i i = - ® 3 - n* - x
i) P0 ¢ K, since M(Po) P, > and .1(Po n Po) >
for rn* = 1, say.
ii) x ¢ K, since property B of the definition is equivalent to

M(PO - n*X) > - = for some «* > 0,




.. . 1 1
iii) If X e K, M(X) < e M(Po) - M(Po - n*X) < o=,

Let k = {((X, 8)]X €K, 2 ¢ R, M(X) - 2 > 0}, where R is the

real line, and let B = {(c X ,|c+ ) c 2> 0}.

Lemma 2 K convex, B convex, and K .\B = @

Proof:

Suppose the points (Xl, zl) and (XZ' 22) are in K., Let t

be arbitrary in 0 <t < 1. We show first that X3 = txl + (1 - t)x2
L ]
is in the set K. By the definition of K, there is an Iy such that

*
M(P° - ni xi) > - w, i =1, 2. Suppose (without loss of generality)
* *

* * "
that Ny £ Ny, Or ny-on; > 0. Then M(Po - XS)

]

M(P, - ng tX) - n;(x - X))

* * * *
M((1 - t)P ¢+ t P - tn X, - (1-1t)(ny X5 - (n - n %),

s Mte - X))+ (1-t)( - X))+ (1-t)(n - n)X)
o~ M X o~ Mm%y 2 = "M%,

w » * &
tMP - 0y X)) ¢ (1 - t) M-y X)) ¢ (L - t)(ny ) M(Xy) > - =

|v

Also M(XS) >t M(xl) + (1 -1¢) M(Xz) > - @ S0 X3 is in K. Note that
we have thereby shown that K is convex.
To show K 1is convex it remains to show that

M(XS) -2,>0, where z_ = tzl + (1 - t)zz. But

3 3
M(x3) -2 > t(M (Xl) - zl) « (1-1¢) (M(Xz) o 12) > 0, so the

convexity of K 1is proved. B is clearly convex, and since




HA(c Xo) -cv, = O, fo ¢>0, B-". . =¢ Q.E.L.

A subset of a linear space is called radial1 at a point X if
for each vector of Y ¢ V there isa T >0 for which 0 <t <T
implies X + t Y is in the subset. We wish to demonstrate the existence
of a ) feasible for problem I such that A(Xo) =V, This will depend

~

on whether the set K is radial at some point.

Proposition 3.

-

For a weakly balanced generalized game, K is radial at

2’ 2
Proof:
Po
Suppos~ (Y. z) € Vx R is givan, We show first that 7 B tY 1s
in K {.: t small eniagh. Since - spcs V, by reorcering lie

indices such that ny % 0 for 1 <i <k and ny < 0 for Kk +1<1c<n

we can write

*
Here each ni > 0 1is such that M(Po - ni Xi) > - =; these constants

exist by prcnerty B of the definit on of a yeneralized game. For each

i, let —%l v. > 0
n i
i
7 -1
Let Tl = (2 X Vi) > 0, and suppose 0 < t < T.
i=1 B

1. See [7] Chapter 1.
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P P
To show fg + tY ¢ K, it sufficies to show that M(Ig + tY) > -

and that p p
H(Po - (72 + tY)) = ”(72 - tY) > - =, These results follows

from the follc.ing rela.ions.

P P

o o k n n
M(f" + tY) = M(f‘ + t( Z vi * E v, - Z vi)Po
i=k+l =

i=l i=1
k . N
+ X v. n, X. - z v. n. X.))
j=l 1 1 1 i=k*1‘ 1 1l
1 n k - n "
= M((5 - tizlvi)po + tizlvi (P, + ny X.) +i:k§1vi (B 5 =l 1))
1 n k . n .
> (5 - tizl\i) M(P ) tizlui M(P, + n. X)) - §=E’;i M(P, - n, X)) > -

*
since M(Po +n. Xi) > - » for all i and all coefficients are non-negative.

i
Similarly
P0 1 n k N
M= - 2Y) = M((z-t] v)P +t] V(P -n X)
i=] i=1
n
st ] vi(P +n X)) > -
i=k-1
Po
SO z—*tYCK.
T P P
& i 1 0 .o
Now let T, = m1n(Tl, 5 /TM( = ¢ T1 Y) ; T1 z|) > 0,
po Po
since 7 ¢ T1 Y ¢ K and hence M( TR T1 Y) < =,

We will show that
}

v 1
+ tY) > = 3 + t2 for 0 <t < T2.

C\)I O'L

M(




Po Po t Po t Po
Now H(:z— + tY) = M(T F .'I-.— -2— + T— T + tY)
1 1
p P
t 0 t 0
2 11 T1) M(z=) + T—I-M(}—+ T, Y
Po Po t rn Po .
ﬂ(—z— 4 tYJ - M(z—) i .Tl [M(z,— + ll Y/ - M(T [
Therefore,
Po Po 1 t Po po 1
.\1(2— + tY) = [T - é- + tZ] i T,-l[z— + Tl Y) = A‘l(-z— ) = Tl Z] + 7

Now by the defintion of the range of t, it follows that

-T1 P Po T1
0 MG T V) -0 e o
P p
t 0 0 1
and therefore, TI [M(f_ + T Y) - 7 - T1 z] > - >
P o] 1

Hence “[52 + tY) - [59 St tz] >0 for 0 <t < T2'
2 po Po 1 y
So (5— D5 - 5)+ t(Y, z) ¢ K for 0 <t < T2. Q.E.D.

It 1s in'~resting .hat provnerties A ind B wus.d in defining a

gencralized gime are necessary to the above result.

Proposition 4:

If K has non-void radial kernel and M(Po) > - =, then x spans

V and, for each X ¢ x, there exists n* > 0 such that M(Po - N*X) > - =,
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Proof:
Suppose K is radial at some (Xo, zo), and let Y ¢V, X ¢

be given. Then there exist tl' t2 > 0 such that

(w, z°) = (Xo + t1 Y, A tl -+ 0) ¢e K and

o) o . %
X - tz X, 27 + t2 tr ¢ K.
Wa-x> o . .

Hence Y = —T with W and X in K. But K is spanned by ,
since M(X) > - =« for all X € K. So Y 1is in the span of .

To prove the remaining assertion, we note that x° in K means
*
- ® < M(Xo) and Xo + t2 X in K means there is an n2 > 0 such that
" w
M(Po - N, (Xo +t, X) > - », by the definition of K. Setting n* = Nyt

-

*
we have i , - X) > M(P0 -1 (Xo + X)) + Ny M(Xo) 2 e

Theorem 5:

There exists a linear functional A on V, feasible for Problem [,

such that A{(X ) = v .
0 0

Proof:

Ly Ler 1+ 2 ~d Proposition 3, * and B are disjo.nt convex sets such
that K is radial at some point. By the theorem of the scvpara*ting hyper-
plane (see (7], page 22) there is a non-trivial linear functional F(X, z)

on V x R such that
sup F(X, z) < inf F(X, z).

(x; Z)C;( (X, Z)CB
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F(X, z) has the following properties:

(i) inf F(X, z) < F(0, 0) = 0 since (0, 0) ¢e B and F is linear.

(X, z) ¢ B
(i) sup F(X, 2) > FEx, v - 1)) =Lrx,v -1) -0
P N - n o’ n o n o' o ’
(X. z) ¢ K
since (ﬂ Xo, " (v0 -1 ¢ K, where ol '(XU),

(iii) inf = sup = 0, from (i) and (ii).

(iv) F(Po, P, - 1) < 0. For, let (Y, z) such that F(Y, z) > O.

By proposition 3, for t > 0 small enough

P .

(2—°, ;-(po - 1)) + t(Y, z) is in K.

- = . , . 1
Buz TP, - 01 < F(R, p - 1 r 28 I(Y, 1) € 2P 5 - 5) + t(Y,2))<0

(v) F(X, z) = £(X) + y2 for f linear on V and some Yy ¢ R.

(vi) f(PO) + Y(po - 1) <0 < f(PO) * P, implying v > O.

In order to apply theorem 2 of Fan-Glicksberg-Hoffman [8] we observe
that -M(¥ + z is a convex sys' 71 of one inequality on the convex set
KxR. .urth - f£(X) » yz 1is linear nd ! nc~ conca.e, and -M(X) + z < 0
(X,2) ¢ K "2 £(X) + yz < 0. Therciore, the generalized Fark:s-Minkowski
type theorem of Fan-Glicksberg-Hoffman [8] asserts the existence of k > 0
such that

f(X) + yz < k[-M(X) + z] for all (X, z) ¢ K x R.
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Since (0, 1) and (Y, -1) are in K x R, it follows that

£(0) + v < k[-1(0) + 1 and therefore < k. Similarly

£(0) -y < k[-M(0) - 1] implies -y < -k. Fence k =y >0, and
-£(X) . i . -
-5 2 M(.1 fur X ¢ K. Here w. use t.ie fact that 1i(0) = 0, for
otheiwise M(X) = ¢+ « for all X, and in particular M(xo) S v,

a contradiction.

For each X ¢ K, let A(X) = :féil . Since K-y and yx spans
V, this induces a linear functional A on all of V, with the properties
that
(i) A{+) > M(X) for X e . and hence
(i1) A(X, > M(X) > v(X) for L€ -, r0o A _s feasible for problem
I, and

(iii) 0 > A(XO) o VN M(Xo) SV 0, so A(Xo) =V, Q.E.D.

Later on, we will use the fact that this proof does not rely on Xo € X
except in the implicit assumption that M(Xo) B which follows

from X ¢ ¥x.
0

Corollarz 6:

If vo = v(Xo), the core is non-empty.

The next proposition gives sufficient conditions that the functional

values {A(X)IX ¢ x} constitute a bounded set. While the hypotheses may

appear strong, they are satisfied by the examples given earlier.




E;qpp§itj n 7:

Suppose 1.r a weakly balanced gam.

i) There is a P, with - =< M(P_) <=, and an n > 0 such that
HiPEE nX) > - » for all X ¢ x, and
ii} There is a set n x such that v(P) = 0 for P ¢ n and

A(Po)

M (X) > - = for X ecx. Then (A(X)|< for all X ¢ x and &

1

as found in h-orem S.

Proof:
Hypothesis (ii) implies that Mn(x) = 0 for all X ¢ x, so since

m.. x, it follcws that MX(X) > M'(X) = 0 for all X e x. For any Y ¢V,
n

H(Y) > - = implies Y = z n. X, with n, >0 and X. ¢ x. Hence
X jap 1+ 1 i - i

H(Y) >
x( >

ez

i M(X) > 0.

a

In the proof of proposition 3, we showed that the set K contained
P

an interval on an arbitrary ray (Y, z) from the interior pcint (fg "
po 1
] ). Let that ray be (X, 0) for any X € x, in which case hypothesis

p -
guarantees that Mx(f9 + % X) > - »

N 30

(i) implies that the choice Tl =

since the ex.ression of X in ter.s of memiors of x 1is trivial.

RSTE-I

This means tha. =— X 1is in K, and .1lsc¢ that

2

|+

+
ST
>
o
| v
o
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X 1s also in K by property (ii) of that set. By property (i) of the

functional A,

Po 5 Po n X
hut  A(P) = A(Potr-aX) ¥ a(nX) > & A(nX), or
A(P)
x| < -~ This bound is independent or the choice
n
of X ¢ x. Q.E.D.

liypothesis (i) of this proposition is a "uniform'" version of property
B in the definition of a generalized game. The set = might be called
a slack set, by analogy with finite linear programming. If x contains
a slack <et, then the equality signs in the definition of weakly balanced
can be changed to <, wh.re the urdering is tha. which is ind'z~J] by the
positive cone generated by n. The inequalities A(P) > 0 which will
appear in problem I are equivalent to a requirement that XA be a positive
linear functional.

An alternative approach to proposition 7 might be to equip V with
a topology, state conditions such that X will be a continuous linear

functional and restrict x to be a bounded set, in which case (see

[7]), page 45) the range set A(x) will be bounded. In particular, A
will be continuous if x includes a slack set containing an open set
(in fact it need be only a Baire set of second category), by [7] theorem

10.10, since x 1is bounded below by 0 on the slack set., Other conditions




similar to those of Proposition 7 can be stated in order that A Dbe
continuous. However in applications attention is focused on A restricted
to coalitions, since no interpretation a'heres to the remaining elements

of V, so Proposition 7 has been dealt with in a topology-free manner.

5. Chara' “erization of Redurdanc. and the Farkas-Minkowski Property

Soiwe of .ne inequalities A(XG) ~‘(Xu" }J e x .iay hold autonatically
for every ) satisfying a system of such inequalities on a subset v _ x.

If this is the case, A(Xu) 2) v(xa) is said to be redundant with respect

to y. We will be concerned with the non-trivial case XG g v. If
A(Xa) > v(Xa) is redundant with respect to vy = x - {Xa}, the coalition
Xa can be ignored in determining core membership. Furthermore, a new
coalition, XB’ might be sought such that A(XB) 2 V(XB) is redundant
with respecv to w' =y - {XB}. ln the finite game case, conditions can
be given under whici reiteration of this procedure leads to a characteriza-
tion of core membership in terms of coalitions each consisting of a single
player [9]. \eaker results are available in the generalized case.

For a given subset ¢ .- x, denote the subspace of V generated by
¥ as VW' Note that if Xu ! VW' A(XQ) :_v(XQ) cannot be redundant with
respect to /., This follows from the fact that in this case A can be
defined as 1 = (Aa, Ay), wher= Xa acts on  he one -dimensio: al subspace
spanned by X , and A acts on the subspace spanned by x - {x_ . But

inequalities arising from members of v  affect only AY. So Aa(xu) may

be made less than v(XQ) for any function V.
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It turns out that when MV(XG) > - =, necessary conditions can be
given tha- A(Xm1 1y(xa) te redv ‘ant ' ith vespect to . However these
conditins are shown sufficient only ‘+hen ¢ has an additionzi property.

Fortunately, any ¢ can be enlarged “o a subset with this property, as

follows:

Let F be a linear mapping from V onto Vw such that F(Y) =Y
for Y e Vw (the existence of such an F is shown in [10], page 241). F
is called a projection of V onto Vw. Lot ¢F ={Xeyx|Xey or
Mw(F(X)‘ = - »}, Note that (wF)F = wF, so that it is reasonahle to deal

with sets sucn that ¢ = wF. The discussion of redundancy ¢ 'r the most

part will be limited to sets ¥ such that wF = y for some projection F.
Since wF;" ¥, necessary conditions for redundancy with respect to
E .
¢ are also necessary for redundancy with respect to ¢. Furthermore,

if Xa ¢ ¢ and Mw(xa) > - » thea XG eV SO F(Xu) = Xa and hence

: F
xa fF v .

v
Thus the enlargement of y to wF does not reduce the question

of recunds 'y tc a trivial one.

Th. resvits of this section foll .#»+ f-om this lemma:

Lemma 8 Supnose for a weakly balanced gane (x, XO; v), ¥ _ x satisfies
wF =y for some projection F and XW € x satisfies Mw(xu) > - =, Then

inf(x(xu)}x(Y) >v(Y), Y el A'(Xu) s MW(XQ), where X ranges

over all linear functionals on V.

Proof:

The result will fcllow from the application of Theorew > to a game
over the subspace VW' Recall that the definition of a gencralized game
required the existence of an element Po in V such that for each X € x,

M (Po - n"X) > - » for some n* > 0. lie must demonstrate the existence of
X
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an element in Vw corresponding to Po.
Let F be the projection given by the hypothesis. Let Pé = F(P);
it will be shown to have the desired property. Given Y € y, since
i X, + n'Y =P f >0 and X
Y € x we can write z ng Ry +nY =k Tor some n.n > an i £ X
| Since F is linear, P = F(P) =] n, F(X,) ¢ n"F(Y). But since Y ¢ v,
= V = ( - 0 .
F(Y) If Xi €V, F(Xi) Xi SO Mw(F(xi)) > . If xi £ ¢ then

. F - Y ! _ * o 4 N - ®
my (F(X)) > - = since ¥ =y, so 4 (P - nY) = L0y M(F(X)) > - =,

i For any Xe € ¢, this shows that (y, XB; VW) is a generalized game, where
vw is v restricted to .
| Furthermore, (v, XB; vw) is weakly balanced. The above paragraph
] n *
shows that Po = izlni Yj with ng 2 0, Yj e v~ x. Let nEl> 0 such

*
that M (P -n. Y.) » - =, let v. =n./n.,i=1,...,n, and let
X" 0 ij i TER

u o= (_é

. ' . .
; vi) > 0. If MW(PO) =, inen My(JPo) = w since y. x. Then

1

' ' * '
t o = -
M (P) = M (P - WPy + WP M (P - u )l oo ) Y, +uPy)

* '
Mx(u ) v, (P - ng Yj) + WP)

v

* 1
u) v, MX(PO - ny Yj) + qu(Po) il g

)
a contradiction, so MW(PO) <o and (¢, XB; vw) is weakly balanced.




Furt'.ciniote, Mw(xu) > - «» by assumption.

[f )((l € v, then the above shows (y, Xa; v) is a weakly balanced
generalized game and by Theorem 5 there exists a linear functional ) with
P 3 = 5 .

(Y) > v(Y), Y« v and x(xa) dw(XG)
Since Theorem 5 does not depend on Xa €Y SO iong as Mw(xa‘ ,o-w
(see note following Theorem 5) this cquation holds in any cc.e. Bu: any

A with A(Y) > v(Y), Y € y satisfies
X(XG) = A( z 4 Xi) = z n )‘(Xi) :X ng V(Xi)

= i X = i
where XOl Z e Xi, N >0, Xi € ¥, so therefore inf A(\a) ]w(xu)

Propositic® 9:  Characterization of Re. nda' y)

Let (x, Xo; v) be a weakly balunced game and ¢ = wF' X -

If MV(XG) > - =« for some Xu ex, Vv ex, (x, Xo; v) weakly balanced,
then the constraint A(xa) > v(xa) is redundant with respect to ¢ 1f
and only if MW(XG) > v(XG).

coof

Consider the dual prrgramming problems

1 11
¥ Y
Lo:inf A(X) M (X )= sup ) on, v(Y)

v Q Y a QCB IS} 5
subject to A(Y) > v(Y) Bubjeet to

all e Z‘nb, Y, =X,

¢eB
n > 0
b pa—

where B runs over all! finite 1rdex sets
o' v




Since M (1) > -, .. (X) =1L by Loma t. ’he conclusion mo, follows
vy o a yp a ¥
by observing that A(Xa) > v(Xa) is redundant with respect to  iff

Lw > v(Xa).

Proposition 10:

Let (x, Xo; v) be a weakly balinced garc and let XQ £y = WE‘ X

wuppose tt.t .h. set T = {Y ¢ w|MW(Xa - n*) > - » for some w* » 0} is

non-empty. Ther A(XQ)

v

v(Xa) is red.ndant with respect to -~ if and
only if it is redundant with respect to .

Consider the dual problems in Proposition 9, and the following pair

(1) (11,)
L. = inf A(X) Mo(X ) % sup ) n v(Y,)
T & P B' geB' b P

subject to M (Y) > v(Y) sthject to ) n Y =X
e ‘

where B' ranges over all.finite :adex sets of T.

Since Mw(XG) > - =, it follows that MT(XG) > - =, Also MT(XQ) < o
since M(Po) < » (see the argument of Lemma 8). If Xa e T, then
(T, Xu; v) is a generalized game with XOl playing the role of Po' SO
Theorem 5 yie'ds LT = MT(XQ). But Theorcm 5 deoes not depend on
e T, o v = MT(xa) in any case.

If n s feasible for 11 I.> non-zero

:
) and (11 T

Compare (wa )
components can be used to form a feasible solution to IIW’ since T {.
Conversely, if n 1is feasible for IIw, all components corresponding to

members of ¢ - 1 are zero. This follows from the definition of T, since
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the appearance of a ng >0 with X; ¢ v - T means that X, o T So n
is feasible for IIT if and only if n 1is feasible for IT, SO
L,1 = MT(XQ) = NW = LW' Hence A(xa) > v(Xu) is redundant with respect to
Lv > V(X()Aijﬁ L,r > v(xa) ,,X(XJ) > v(Xa) is redundint with respect
to T. Q.t.D.
Note that in the case of examples 1 and 2 that T consists of all
characteristic functions im ¥ of sets A ¢ z such that A - Sa, where
X, 1is the characteristic function of S5 . In the finite case Propositions

9 and 10 reduce to Propositions 10 and 9 of [3], respectively.

The cor’ition that T # ¢ 1i: essentia! to proposition 10:

Let 21 * the field of all subs ‘s o~ [0, 1], 1=t x be the
corresponding set of churacteristic functions, and let X L. the

characteristic function of the set {0}. Furthermore, define v(X) =0

for all X except v(Xu) = ] and v:Yn) 2 for Yn the characteristic

function of the closedintervalfo, % )], n=1,2,3,...,. If ¥ =uy=yx- Xy

then T = ¢. Clearly A(Xq) 2 v(xa) = 1 is not redundant with respect
to T, but if A(Yn) > 2. for all n, X(Xu) >2> v(XQ) S0 A(XG) > v(xu)
is redun @ :nt with respect to V.

The following example points up the importance of the a -.aption

M (X ) > - « in the above results.
vooa

Let X = (“”2)-13 x = (9. x =

e y- _ » 0— _lnB 1

and x = {X_, Xg Xyly

|v

0}. If we define v(Xy) = -tan'ly + y(1 + yZ)-l’

n : : v il '
v(Xa) = -3 and v(X 0, then (x, Xu, v) with Po = (1) is a weakly

g)
balanced ge-.eralized game (see [11] for a d:tailed discussion of this game in
terms of semi .nfinite nrogramming.) .f ., = | - (Xa;, then Ya < VW and
Mw(xa) = ®,  Nonetheless A(Xa) = v(XG) is redundant with respect to .

However if we redefine v(Xa) > - % then X(XG) > v(XG) is not redundant

with respect to V.
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